If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+50+100=8400
We move all terms to the left:
x^2+50+100-(8400)=0
We add all the numbers together, and all the variables
x^2-8250=0
a = 1; b = 0; c = -8250;
Δ = b2-4ac
Δ = 02-4·1·(-8250)
Δ = 33000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33000}=\sqrt{100*330}=\sqrt{100}*\sqrt{330}=10\sqrt{330}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{330}}{2*1}=\frac{0-10\sqrt{330}}{2} =-\frac{10\sqrt{330}}{2} =-5\sqrt{330} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{330}}{2*1}=\frac{0+10\sqrt{330}}{2} =\frac{10\sqrt{330}}{2} =5\sqrt{330} $
| 6+1/2=x*2 | | 22+3x=9x-2 | | m-0.2.m=2.1 | | 4/k=8.2 | | 4+2x-6+7x=13x-14x | | Y-125=5(100-5x) | | 8w+20=4+20 | | 3x2−14x−5=0 | | x^2+(x+1)^(2)=(x+2)^2 | | 12+2x=-6x+6x | | 5x=100x= | | m=4.75/4m-7 | | 20=w-29 | | m=4.754m-7 | | 4-2n=4(1+6n) | | 7(b-7)=-98 | | 6s=84 | | m/4-43=-36 | | (x-7)(6)x=15 | | 3.6=1/2z | | 3(6x-3)=3 | | f5− 2=2 | | 5x-32=-2x+59 | | -6x-9=30 | | 39=11+7w | | –18s+8s−–14s+–12s=8 | | 2+w=10 | | u-u+2u=6 | | 3x+2+x=⅓(12x+6) | | 13=f-7 | | 11k-10k-k+k+4k=10 | | 3(r-60)=63 |